Exercise 20

Use the method of undetermined coefficients to find the particular solution for the following initial value problems:

$$
u^{\prime \prime}-5 u^{\prime}+4 u=-1+4 x, \quad u(0)=3, u^{\prime}(0)=9
$$

Solution

This is an inhomogeneous ODE, so the general solution is the sum of the complementary and particular solutions.

$$
u=u_{c}+u_{p}
$$

The complementary solution is the solution to the associated homogeneous equation,

$$
u_{c}^{\prime \prime}-5 u_{c}^{\prime}+4 u_{c}=0 .
$$

This is a linear ODE with constant coefficients, so the solution will be of the form $u_{c}=e^{r x}$.

$$
u_{c}=e^{r x} \quad \rightarrow \quad u_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad u_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-5 r e^{r x}+4 e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-5 r+4=0
$$

Factor the left side.

$$
(r-1)(r-4)=0
$$

$r=1$ or $r=4$, so the complementary solution is

$$
u_{c}(x)=C_{1} e^{x}+C_{2} e^{4 x}
$$

Now we turn our attention to the particular solution. Because the inhomogeneous term is $-1+4 x$, try a particular solution of the form, $u_{p}=A+B x$. Plugging this form into the ODE yields

$$
u_{p}^{\prime \prime}-5 u_{p}^{\prime}+4 u_{p}=-5 B+4(A+B x)=(-5 B+4 A)+4 B x=-1+4 x .
$$

Now we match the coefficients to determine A and B.

$$
\begin{aligned}
-5 B+4 A & =-1 \\
4 B & =4
\end{aligned}
$$

The solution to this system of equations is $A=1$ and $B=1$. Thus, $u_{p}=1+x$. Therefore, the general solution to the ODE is

$$
u(x)=C_{1} e^{x}+C_{2} e^{4 x}+x+1 .
$$

C_{1} and C_{2} can be determined since initial conditions are given.

$$
u^{\prime}(x)=C_{1} e^{x}+4 C_{2} e^{4 x}+1
$$

$$
\begin{aligned}
u(0) & =C_{1}+C_{2}+1=3 \\
u^{\prime}(0) & =C_{1}+4 C_{2}+1=9
\end{aligned}
$$

The solution to this system of equations is $C_{1}=0$ and $C_{2}=2$. Therefore,

$$
u(x)=2 e^{4 x}+x+1 .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =8 e^{4 x}+1 \\
u^{\prime \prime} & =32 e^{4 x} .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-5 u^{\prime}+4 u=32 e^{4 x}-5\left(8 e^{4 x}+1\right)+4\left(2 e^{4 x}+x+1\right)=-1+4 x,
$$

which means this is the correct solution.

